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COMPUTATION OF POTENTIAL FLOWS WITH EMBEDDED VORTEX RINGS
AND APPLICATIONS TO HELICOPTER ROTOR WAKES

.,

	

	 by

Thomas W. Roberts

ABSTRACT

A finite difference scheme for solving the motion of a
number of vortex rings is developed. The method is an
adaptation of the "cloud-in-cell" technique to axisymmetric
flows, and is thus a combined Eulerian-Lagrangian technique.
A straightforward adaptation of the "cloud-in-cell" scheme
to an axisymmetric flow field is shown to introduce a grid
dependent self-induced velocity to each vortex ring. To
correct this behavior the potential is considered to consist
of two parts, a local and a global field. An improved
difference formula is derived, allowing the accurate calcu-
lation of the potential at points near vortex locations..
The local potential is then subtracted before calculating
the velocity, leaving only the influences of the remaining
vortices. The correct self- induced velocity is then explic-
itly added to the vortex velocity.

Calculations of the motion of one and two vortex rings are
'performed, demonstrating the ability of the new method to
eliminate the grid dependence of the self-induced velocity.
The application of the method to the calculation of helicop-
ter rotor flows in hover is attempted. While the wake
geometries converged when only a few vortices were used to
represent the Wake, the introduction of many vortices
resulted in failure to converge. 	 It_ is thought that the
non-convel^gence may be due to a -physical instability
suggested by experimental results. However, the representa-
tion of a distributed vorticity by discrete filaments is
also a possible cause of the diffwculty.
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NOMEMCLATURE

a
	 vortex core radius

CT
	 thrust coefficient

F
	

fluid flux ( see equations 19)

approximate fluid flux (see equations 12)

N
	

number of vortex markers

r
	

radial coordinate

R
	

rotor radius or reference length

provisional radial coordinate ( see equations 16,29)

t	 time

U
	

radial velocity

w
	

axial velocity

Z
	

axial coordinate

Z
	

provisional axial coordinate ( see equations 16,29)

r	 circulation
SO
	

jump in 0 across branch cut

4r
	

grid spacing in radial direction

At
	

grid spacing in time

qz
	 grid spacing in axial direction

e^
	

grid spacing in aximuthal direction

angular coordinate attached to vortex

a
	

inflow ratio, w/11R

radial coordinate attached to vortex

veloct potential

t 
	 y

w	 azimuthal angle

W	 relaxation parameter

;z

'RECEDING PAGE BLANK NOT FMMEff
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fl	 rotor rotational speed

7	 gradient operator

72	axisymmetric Laplace operator

V2	
axisymmetric finite-difference Laplace Operator

subscripts

i index denoting vortex marker

j index denoting radial coordinate

k index denoting axial coordinate

ref reference value

far far wake value

cyl vortex cylinder value

superscripts

f	 local values removed

1	 local values

n	 index denoting time or iteration level

+

	

	 value just above branch cut

value just below branch cut
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CHAPTER. 1. INTRODUCTION

0 ,	 1.1 Importance of Vortex Flows

f,	 Most flows of aerodynamic interest contain regions of

vorticity. The generation of lift by circulatory flows

implies the creation of vorticity in the form of thin wakes.

In many cases--for example, the flow around an isolated,

moderately swept wing at a small angle-of =attack -the

vorticity can be assumed to lie in a planar vortex sheet

behind the wing. The deformation of this sheet downstream

of the wing has only a higher order effect on the lift of
t

the wing.	 The neglect of the roll-up of the sheet is
	

i

computationally simpler and has noappreciable effect on the

calculated aerodynamic forces.

However, many flows contain vortex sheets that interact

strongly with the lifting surfaces. 	 The evolution and

position of these sheets must be properly accounted for if

one is to accurately determine the aerodynamic forces.

Examples of such flows are: 	 chose-coupled canard-wing
r
t

combinations; strake-win
g
 combinations at hi gh

angles-of-attack; slender wings with leading edge vortex

sheets; and rotary wing aircraft in which the vortex wake

remains close to the rotor blade plane, Only if the

position of the vortex sheets is correctly predicted can the

ae rodynamic char_acteristics of these configurations be cal-

culated with confidence. The ability to calculate these .I

7f
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flows, which	 are highly nonlinear,	 is	 a major challenge in

computational fluid dynamics.

If	 it were	 possible to	 solve the	 full Navier-Stokes

equations, no special modeling	 would be necessary for these
i

vortex	 dominated	 flows.	 However,	 solution	 of	 the

Naver-Stokes	 equations for	 general configurations	 is not

feasible	 presently, and	 simplified models	 of these vortex

flows are required.	 Considerable simplification results by

noting that the vorticity in 	 these flows is concentrated in

limited regions	 of the fluid,	 typically	 thin wakes.	 Also,

viscous effects are generally 	 negligible, and the fluid may

be	 treated	 as	 inviscid.	 finder these	 conditions,	 it is

possible	 to	 make use	 of	 Helmholtz's vortex	 theorems, by
t

which'it	 is known that	 vortex lines are	 material lines of

the fluid	 and are convected with	 the local fluid velocity.
R

The	 vorticity	 can be	 represented	 as a	 finite	 number of

vortex	 filaments of	 given circulation,	 moving under their

mutual influence.	 This is the	 basis of vortex methods, and

these methods are reviewed below. t

1.2	 Relevant Previous Research III

A recent	 review of vortex methods	 is given by Leonard_

(1980).	 The	 fundamental aspects of vortex 	 methods are the

representation	 of	 the	 vorticity	 as	 a	 finite	 number of

discrete vortex filaments, and the tracking of the motion of

these filaments under their	 mutual influence.	 Vortex meth-

i

S
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ods are thus Lagrangian, rather than Euleria.r, flow simula-

tions.

The earliest attempt to calculate the roll-up of the

vortex sheet behind an elliptically loaded wing by discrete	
s

vortex methods was done by Westwater (1935). He solved the

problem of the unsteady, two-dimensional roll-up of the 	 }

sheet in the Trefftz plane. Subsequent attempts (Moore

1971, Clements & Maull 1973, Fink & Soh 1974) to repeat

these calculations have met with varying degrees of sLcc'ess.

Typically, the motion of the vortices becomes chaotic near

	K	 the edge of the sheet, and some sort of ad hoc procedure is

required to smooth the behavior of the sheet. This tusually
r

	

c^	
takes the form of introducing a rotational core to each

filament, thus eliminating the velocity singtilarit ► , or

t redistributing the vorticity at each time step. Also, some

serious questions as to the validity of representing.a
y

continuous sheet as a finite collection of point vortices

	

(	 have been raised. (For a discussion of these questions, see	 ^ r

	

11	 !t

the review article by Saffman & Baker, 1979.)
x

Calculations using discrete filaments are typically

done by using , the Riot-Savart law to calculate the

vortex-to-vortex interactions. This requires o(N 2 ) opera-

tions, per time step, where N is the number of vortices. If

	

r	 a large number of vortices are used in the simulation  a

great deal of cpu is required to calculate their motions,
F

thereby restricting the number of vortices representing the

r



-J

10

flow in practica?, cases. Recently, Spalart & Leonard (1981)

have presented a vortex tracing scheme which requires O(N")

operations per time step. The method considers groups of	 s

vortices and, computes long-range interactions on a

group-to-group basis. Short-range interactions are computed

on a vortex-to- vortex basis, using the Biot-Savart law.

Christiansen (1973) and Baker (1979) have introduced

the "cloud-in-cell" technique of plasma simulations to the

calculation of vortex flows. In this approach, the

velocities of the vortices are calculated by solving for the

streamfunction on an Eulerian finite-difference grid. The

velocities are then interpolated to the vortex positions,

and the vortices are tracked in a Lagrangiart reference

frame. Using a fast Poisson solver for the streamfunction,

these calculations require fl( M log=M) operations per time i

step, where` M is the number of grid points. The grid

introduces fine scale structures on the flow,' which are

amalgamated into larger structures, independent of the grid.

Large numbers of vortices can be efficiently represented by

this approach. }

This approach was modified by Stremel (1982) and Murman

& Stremel (1982) who solved for the velocities using the

velocity potential rather than the streamfunction. Stremel

used this aproach to calculate the flow behind a convention-

al wing and flapped wing. 	 .r

The application of vortex methods to the calculation of

..r
r
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helicopter rotor .wakes is a problem of great practical

importance	 and	 difficulty.	 The	 wake	 geometry, or

distribution of	 vorticity, strongly affects 	 ti,e lift

distribution of the blades. Calculations of helicopter

rotor wakes in hover can be classified into prescribed wake

analyses or free wake analyses. Methods of the first type

are described by Landgrebe (1971, 1972) and consist of

specifying the geometry of the trailing vortex filaments

below the " blade.	 The geometry specified is either a

classical	 wake	 (Goldstein-Lock) or	 an experimentally

observed wake.	 Although an expQrimentally prescribed wake

analysis gives more accurate blade loadings than the classi-

cal wake, the large degree of empiricism is ;undesirable.

Furthermore, the accuracy of the predicted loadinga for

untested configurations must necessarily be viewed with a

decree o 4 suspicion when a prescribed wake analysis is used.

Free wake analysis places no restrictions on the

georetry of the vortex wakes. Rather, the force-free vortex

po itionsi in. the wake are found iteratively from an assumed

initial configuration. The free wake analysis wa s

introduced by Clark & Leiper (1970). Although this appuoach

is far more genera-1 than the prescribed wake analysis, the

computational requirements are much greater.

Currently,, the work of Miller (1981, 1982', 1983) is

aimed at providing a simplified free wake model Miller's

analysis assumes the trailing vorticitY, attached to the
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blade, which he calls the near wake, may be represented as

straight, semi-infinite vortex filamenta. From the calcu-

lated blade loading, he allows the trailing vorticity to

roll-up according to the Betz criteria (Donaldson, et. al_.

1974) into two or three distinct vortices: a tip vortex, a

center vortex, and a root vortex (the last is usually

neglected). These vortices make-up the intermediate wake.

As a further simplification, Miller replaces the helical

filaments of the intermediate wake with either vortex'rings

(the three dimensional model) or doubly-infinite vortex

lines (the two dimensional model). The force-free positions

of these vortices are found by iterating from an assumed

initial configuration determined from rotor momentum theory.
A

From the converged positions, the new loading on the rotor

blades is determined. Using this load distribution, the new

wake geometry is determined and the loading recalculated.

This iteration between the wake geometry and blade lift

distribution is continued until the load converges.

Stremel (1982) attempted to describe the wake.. geometry

in greater detail, using Miller's two dimensional model with	 j
z

a large number of filaments.	 However, he was unable to get

converged results for the wake geometry.

1.3 Scope of Current Research 	 °.

This thesis extends the work of Stremel (1982) to

axisymmetric flows with curved vortex filaments (vortex
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rings), A naive application of the " cloud-in-cell" apprc;ach

to the axisymmetric potential equation is inadequate, as the
a

self-induced velocity of a ring is found to be dependent

upon the grid spacing and on the location of the ring

relative to the grid nodes. In order to correctly account

for the self - induced velocity, the scheme is modified to

more accurately determine the potential at points near a

vortex. The ,incorrect self-induced velocity obtained from

the potential differencing is subtracted, and the correct

self—induced velocity added explicitly, This approach

allows accurate calculation of the velocity of a ring whose

core size is smaller than the grid spacing, and eliminates

the grid dependence of the self=induced velocity.

With ^J <.^i modification, the independence of the solu-

tion ors the grid for unsteady flows with one and two vortex

rings.is demonstrated.. One-step and two-step time integra-

tion schemes are used to calculate the motion of two

"leapfrogging" vortex rings.

Besides the calculation of unsteady vortex flows, the

calculation of the steady wake geometry of a two-bladed

helicopter rotor in hover has been attempted using an

extension of the vortex ring model of Miller (1981)

Converged results are obtained using Miller's Simplified

wake model with a few ring vortex markers. Difficulties in

achieving converged results for wakes consisting of many

vortex rings are observed. This leads to the speculation

d

b



,1 4

that a steady solution may not exist. 	 However, definite

conclusions cannot be drawn at this time.

T

a

6

t

1
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CHAPTER 2. VORTEX RING FLOWS

2.1 Outline of Approach

All	 flows	 considered in	 the present	 work are

axisymmetric with no swirl, i.e., the axial vorticity

component is everywhere zero. All the vorticity in the

field is considered concentrated into a finite number of

vortex rings, concentric about the axis of symmetry. The

vortices move under their mutual induction. The flow

everywhere outside the cores of the vortices is incompress-

ible and irrotational.

Since the motion of each vortex is tracked through

space, the method is Lagrangian in nature. However, the

velocity of each vortex is found by solving for the velocity

potential in the region surrounding the vortices at each

time level and interpolating the velocities to each vortex

location. This solution of the potential field equation at

each time level is an Eulerian description of the flow.

Since the method combines both Eulerian and Lagrangian flow

descriptions, the method 	 is termed Eulerian -Lagrangian

(Stremel 1982).

In this chapter, the model for the unsteady flow

problem is developed. The "cloud-in-cell" solution proce-

dure is described, and 'it is shown how the scheme.eliminates

f "'	 the singular nature of the vortices in the Eulerian refer-

ence frame,	 in the results^of Baker ( 1979) and Stremel

{
f

^.W........-...„;.,y;,.;„:„x ....'sx iN.-Yik-cFk x _	 -x-:ro--•---'r*..,.-.,-.-,	 i .^. .. .	 a. ...ter	 ....	 _	 ..	 ... _^_ _	 ^_ _. .'	 I
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(1982), the elimination of the singular nature of the point

vortices by the difference formulas was found to affect the

small scale features of the flow, but the large scale flow

structures were insensitive to the grid size. This was

interpreted as a grid dependent artificial viscosity, or

vortex core size (Murman & Stremel 1982).

However, in the axisymmetric flow case considered here,

grid effects are non-negligible. This is because a curved

vortex line induces a velocity on itself, whereas a straight

vorte,r; line has no self-induced effect (Batchelor 1967, p.

510). The self-induced velocity of a vortex ring is found

from the formula

•	 In aR
	

-W	 1nR	 a	 4	 1 3

M	 J

where R is	 the ring radius and a is 	 the core radius of the "	 1

vortex (Lamb 1932, p.241). 	 It	 is found that a straightfor-

ward	 adaptation of	 the "cloud-in--cell"	 approach described #'

above results in an effective core size, and hence velocity,I

that is dependent upon grid spacing and on the location of a

vortex within a grid cell.

2.2	 Unsteady Vortex Flow Model

The region	 R containing all	 the vortices is	 shown in

figure 1.	 Given an initial configuration of N vortex rings,

with circulations r^ and positions 	 (rj,z,),	 i = 1 to N, the ,
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is given by the set of ordinary

dl z,
eit 

	 (2)

motion of the rings

differential equations,

dt : ice`

Here, r^ and Z^ are the radial and axial coordinates of the

i-th ring, respectively, and u Z , w^ are the corresponding

velocity components. Equations ( 2) are called the trajecto-

ry equations.

If each vortex is a ring of infinitesimal thickness

coaxial with the r = 0 axis, the incompressible, irrotational

flow outside the vortices may be described by a velocity

potential, 0, satisfying Laplace ' s equation,

	

z

	 '57.1

The velocity at any point is given by

..^' u ;	 a2 w. 	 (4)

The potential is multiple-valued for circulatory flows,

and it is necessary to introduce branch cuts for each vortex

in order to maintain a single-valued potential. The poten-

tial is discontinuous acros s these cuts, but the velocity

and its derivatives are continuous. The position of the

branch cut for each vortex is the surface-of the disk normal

to the symmetry axis and bounded by the vortex. The branch

conditions for the potential are given as

	

^^`	

r < 
r `	 s	 (5a)	

I

i

t
s



It

8

(+Jl

18
	

ORIGINAL PACE 19

OF POOR QUALITY

P0 + -- P0_	
(5b)

for i = 1 ^o N, where [ c ]^ _ 10(r, z`) - 0(r,z ) and 70 
P0(r,z!).

a	 ;
The solution of equation ( 3) requires boundary condi-

tions on the surface bounding the domain R 	 On the axis of

symmetry, the condition of zero radial velocity i,,

specified, while Dirichlet conditions are used on the outer

boundaries. The Dirichlet conditions are found by summing

the value of 0 on the outer boundaries due to all the

vortices in the field. The boundary conditions are written

aq6 v	 (sa)
ar I..o

=f (5b)

	To find the vortex velocities (u,,w, , ), it is necessary	 ',I

to evaluate Equations (4) at the vortex locations (rj,z,).

Since these points are branch points, equations (4) are
i

undefined there, and it is necessary to eliminate the

singularity of the i-th vortex in order to solve for the

velocity due to the remaining vortices. The self-induced
t

i

velocity of the i-th vortex ring must then be added

explicitly to the velocity due to the other vortices.

	

OOnc e the vortex velocities are found the positions at	 -^

the next time level are found by integrating the trajectory

equations (2).

2.3 Non-dimensional Variables

a/
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For unsteady flows the following non-dimensional vari.-

ables are used:

Vfr
	

u= 1 V1 f u,	
t ^nf

r s r,,, r'	 a . 'R I O ;

	 (7)

where the asterisks denote non-dimensional variables.til

R. 9 and ("n F are a reference length and circulation, respec-

tively. For flows in which all the circulation is of one

sign, r,, F is taken as the total circulation, and R r,F is the

roidius of the centroid of vorticity.

In	 the	 remainder,	 of	 this	 chapter,	 only	 the

non-dimensional equations will be 	 used.	 The asterisks will

be dropped for convenience.

2.4	 Numerical Solution
4

In	 order	 to	 solve	 the	 governing	 equation	 for the
j

potential	 on	 the	 Eulerian	 finite	 difference	 grid,	 the

vorticity must	 be distributed to	 fixed points on	 the grid i

from	 the	 vortex	 positions	 in	 the	 Lagrangian	 frame	 of
44

rv f reference.	 This	 is done	 by adapting	 the "cloud-in-cell"

` -	 approach	 of	 Christiansen	 (1.973)	 and	 Baker	 (1979)	 to

axisymmetric flows.	 Both Christiansen 	 and Baker solved the

streamfunction equation in	 two dimensions and redistributed

the vorticity to the grid nodes. 	 Stremel (1982),	 in solving

the	 potential	 equation,	 found	 it	 more	 convenient	 to
k

P

[1] Note:	 A	 different non-dimensionalization scheme 	 is used in `.
chapter 4.
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redistribute the vorticity to the centers of the grid cells.

In the current work, the vorticit: was distributed to grid

nodes as done by Christiansen and Baker. It is found that

this is as convenient as Stremel ' s approach, providing that

due care is taken at the branch cuts.

Following Christiansen and Baker, the "cloud-in-cell"

approach consists of distributing the vorticity of each

vortex to the four nearest grid nodes by bilinear interpola-

tion, or area weighting ( figure 2). This conserves the

total circulation (and moment of vorticity in two dimen-

sions). After all the vortices have been redistributed to

the grid, the branch cuts will lie along radial grid lines.

(figure 3). The jump in potential, [0], across a cut due to

circulation r isk located at grid point (j,k) is W, for all

points inside of (j,k), and zero for all points to the

outside. Point (j,k) is a branch point and the value of the

jump here due to fi,k is taken as the mean of the jump on

either side, i.e. 21fro,. The total value of the jump at

any grid. point is found from 'summing the contributions due

to all the vortices lying outside that point. Hence,

X

where .J is the outer radial boundary of the computational

domain

Finally, the value of the potential 	 is undefined at

,t

4

k

. in

^: J
.	 F

V J
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grid point lying on branch cuts. it is taken as the mean

value of 0 on either side of the cut, i.e.

F

^14^^^k (10a)

(lob)

Once the vorticity has been distributed to the grid,

the potential equation must be solved. 	 To der ive a finite

difference formula for the governing equation, consider the

annular control volume centered about the grid point (j,k)

(figure 4). From continuity the flux of fluid across the

faces of the volume must be zero, or

	

Jj 	 u'h°IA.

	

ctrl	 (l la )
our .

or
0 r,06%	 W '"46

f f ^w(c,z^.^^1 - w(<,z^•^.1^rr^c^^ + Jl {r^^^^w(r^.^. ^)- ^•.,u(^•.y ,^)^^^^0(11b)

Dividing by 271 yields
r'.y	 ^',y	 rt.y	

r
^r^i1

w(r' Z'or^r ' ^w(r,Zt." ) rCAr +	 UI(r^^'•v,d^ ' 1r.,^u(r•. ►,^ Z)cl? •p.
7-11.; ..	 -ate	 ^k^,w	

(11 c )

The integrals may be approximated as follows:

W (r. solo ra r	 F. ka'L	 r• jraz

f	 '
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I l k	 k

f Jk+,y, c^ N4 	 ♦ r	 ^jt^h ♦ ^	 (12c)
Ch. u1

	

—	 0^,' f ' k	 12d (	 )
TOM	

F-^^',^ -	 ar	
k 

t.y

Equation (11) is approximated by

	

F	 + I	 k t F ,, + F.	 - Q

Substituting (12) and (10) and dividing by r drdz yields

1	 is t	 /t 4,k 0,-hk 4 01;x/1	 o;,	 ^,k -
Cer1^	

C A^)'	 2f^t^` 
l ^r^,k,^ — ^^^,k-r } (13)

Equation (13) is the five-point centered difference approxi-

mation to the Laplace equation. This finite difference

operator is second order accurate at all points .other than

those where vortex singularities, are located. The right

hand side is non-zero across branch cuts to account for the

jump in the potential.

Boundary conditions on the computational domain are the

symmetry condition at r = 0, and Dirichlet conditions on the

three outer boundaries. The Dirichlet conditions are

satisfied by summing the velocities at the boundary points

due to all the vortices in the field and performing a

trapezoidal rule integration of the appropriate velocity

component around the outer boundaries to get the potential.

It is rioted here that this boundary condition proce-

dure, although straightforward, is not efficient. Baker

(10979) uses an approach where groups of vortices are treated

.as point vortices located at their respective centroids, for

the purposes of determining	 the velocities at the

i

f
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boundaries.	 Also, he only calculates the velocities at a

few boundary points and 'interpolates to the remaining

points. Other possibilities are to use an asymptotic

expression for the vortex ring potential, or' some other

far-field approximation. However, in this thesis the effort

is directed toward adapting the "cloud-in-cell" method to

axisymmetric flows. An attempt to develop a more efficient

method for determining the boundary conditions has not been

made.

The solution to equation (13) can be found using one of

any number of standard techniques. As mentioned in section

1.2, the "cloud-in-cell" approach is quite efficient when a

fast Poisson solver is used solve the field equation. A

fast solver has not been used here due to the effort spent

in developing the method for axisymmetric flows, but it is

intended to incorporate one in the future. The present

calculations were performed using a SLOR method. Relaxation

sweeps were made in the radial direction, from the axis to

the outer boundary.

The velocity at a grid point (j,k) is found from the

I

1
u

k
3	 t

i

central difference expressions

s ^^^I^k -^j-h b
LAi

Will,	
6

(14a)

(14b)
a

u

+i

 order accurate at all points

However, these formulas can be	 f.

.J

These formulas are secon d

except vortex- locations.
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applied at vortex positions, since g6 and $0 have been

defined at grid nodes according to equations (8) through

(10). Hence the singular nature of the vortices has been

removed, and the use of equations (14) results in finite

values for us,h and w.,k.

Following the "cloud-in-cell" approach, the velocity at

vortex locations : in the Lagrangian reference frame is then

found by using a bilinear interpolation of the velocities at

the four nearest grid points to each vortex location (figure

5).

The trajectory equations (2) are integrated using one

of two schemes, a forward Euler scheme,

At 
W 

r

, AtW )

or a modified Euler scheme (Hakes 1979),

r"•  , r"	 At U ti, u K,r r
 Z l 

The time step was originally determined

criterion of Bakes (1979) and Stremel (1982),

er	 42

(15a)

(15b)

(16a)

(16b)

using the

(17)

However, later calculations with equations (16) were done

with larger, fixed-time steps that were _specified arbitrari
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1y. No instabilities due to these larger time steps were

observed.

The computational scheme is diagrammed in figure 6.

2.5 Single Vortex Rings--Results

Figure 7 shows the propagation of a single vortex ring

of unit radius and circulation using equations (13), (14)

(15), and (17). No self-}induced velocity was explicitly

added. Note that the propagation speed is not constant, but

varies with the position of the vortex ring relative to grid

nodes. The speed is a maximum when the vortex is on a grid

node, and a minimum when halfway between two nodes.

Redistributing the vortex to an Eulerian grid results in an

effective core size that is on the order of the grid spacing

(Muroran & Stremel 1982). The circulation of a vortex is the

integral of vorticity over the core cross-sectional area.

For a vortex iodated on a grid node, the vortex can be

thought of as having a uniform vorticity over the area of

the surrounding four grid cells, or 4drdz. Redistributing a

,vortex from the Lagrangian frame to several grid nodes

spreads the vorticity over a larger area, yielding a larger

effective core in the Eule.7ian frame of reference. This

provides and explanation of the variation in speed as the

i

}

vortex propogates through the grid.	 r

The variation of-the vortex speed with grid spacing is

shown in figure 8. The speed varies logarithmically with

0

P
r

• 	 wn
'04
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the grid size.	 Again, the variation in speed can be

interpreted as a variation it, ef..ective core size, as seen

by equation (1).	 a

These	 results	 show	 that the	 grid	 effects in

	

axisymmetric flow are of a difLerent nature than in two 	 #

dimensions (Baker 1979,. 	 Stremel 1982), because of the

self-induced velocity of a curved vortex filament. A

further explanation of the source of the self-induced

velocity of a vortex ring in the current finite-difference

scheme can be made by examining the velocity of an isolated

vortex located on a grid point as calculated by formula

(14'b), and iv shown schematically in figure 9.	 In the two

dimensional	 case	 (figure	 9a), the	 grid	 lines are

isopotential lines; thus, the difference (0ilk,, op'. L) is

independent of the grid spacing oz, and when the branch cut

is taken into account, the resulting velocity is zero,

independent of the grid. However, with a vortex ring

(figure 9b), the difference ( k.,- Oikj) is tv-st independent

of the grid spacing Az, since the axial grid lines are no

f

	

	 longer isopotential lines. Thus even after accounting for

the branch cut, the vortex velocity is non-zero, and varies
1

' with Az.

	

in order to eliminate this grid dependent self-induced	 1

a	 effect, a local correction must be applied to bott the 	 W

governing equation and the local velocity correction. A

J
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method for correcting the self-induced velocity error of the

straightforward "cloud-in-cell" scheme is developed.

2.6 Local Correction Formula

2.6.1 Potential Equation Correction

'he difference formula for the potential is second

order' accurate at al.l points in the field other than vortex

locations. However, near a vortex, the truncation error,

although formally of second order, becomes large due to the

small radius of convergence of the Taylor series expansion

for at points near the vortex. In order to accurately

determine the potential at such points, a correction must,•be

applied to the difference equation*

The correction term is derived by considering the
5

potential at a point in the field to consist of a global

value, containing the influences of all vortices in the

flow, and a local value,, represen,ing the influences of
F

nearby vortices. If the difference formula for the

governing equation is derived from a control volume approach

as in chapter 2, the differences in 0 are interpreted as
representing the fluid fluxes across the faces of the

control volume (figure 4)	 The correction to the difference .

•`	 equation consists of better approximation of the fluxes due- 	 j

to local influences.

Consider the flux across face (i,k+1/2). From equation

(12a),	
f' `

Ojjtk. r̂ er

4

n

c

.;
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Recognizing that this approximation is poor for vortices

located within the control ve lum( or the surrounding area,

the local value of the potential due to these redistributed

vortices on the Eulerian frame is subtracted out, yielding

	

ee	 1 4	 ^^	 (18)

The value F.Fk,' is the approximate flux due to all vortices

outside the local region. This .portion of the flux is

adequately represented by the difference formula (18).

Now- consider the value	 of the flux across face

(j,k+1/2) due to the local influences. This part of the

	

flux may be written a s 	ri,,,`

F!̂k+ k'6 = ^^ W^(^r,y) rcrlr

where w l is the vertical velocity due to local vortices.

Adding this expression to (18), and performing similar

operations on equations (12b-c),

+	 [^j A-	 :t•1	 rjNrr

F	 _ .^..._ r
J 
jr - 1---- r• or i J w (r,Zk,^)rclr 	 (19a)

jib*^^	 a^	 AZ: J 

rj'k•^̀  s 45 ,	 ^^ 
r° er _	 r^A^ "'S w^(r,2 k •'t )rcAr	 (19b)

660%
41^  k CA k	 .} ^t^^t'+^,^)r'i1.C.^^ (19c)j•k •	 r ,.	 J^k	 -

	
IF 	 r̂ ^^d^	 dr-	 ^ hb^	

r,,_•^ ,	
j
	 ^

.loot Z
rp,'A'	

A	 J^V' 6 r - f (A	 ?	 ch (19d)

Adding (19a) through (19b) and setting the sum equal to zero

gives the
(

 resulting finite difference
,^ 

equati
L

on:

	

3
1
y6^►k = Q try k ; (AV ` i °'^kl- 

^^,k- 	 _ C e1` ` 1dT'pr, - E a^^-

( ( 20)(r
Oro! ^" (^V ^^r^ 2rw,) — W ^(I^7r.^,,^ dr -r^ Araa I I ^''4 `Ayr+A, ^ ^ -r:, u `(t• Z) c,^^  

I
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This equation is more accurate than equation (12) for points.

near a vortex.	 The values for 0 4 , w A , and u  can by found

by any convenient mr;Lhod. In this thesis, an approximate

formula for the velocity near a curved vortex due to

Widnall, et.al . (1971) is used. Consider coordinates (C,0)

attached to the vortex as shown in figure 10. The radial

and axial velocities around the vortex in the limit as 0

0 are, respectively,

A ŷ 0 j $R -4
ut = "
	

1Z	 t l^	 (21a)

1̂"co^8	 4R	 4('
UD = R ^-n	 4 ^:	 (21b)

Integrating (21) yields the local potential

^sihc91n„R _2e
l ^	 1	 (22)

for -it<8<7r. This gives the correct jump in 0 across the

branch cut. These expressions for 46 A and the local

velocities were used in equation (20). Again, the local

values are those due to the redistributed vortices in the

Eulerian reference frame, not the vortices in the Lagrangian

frame.	 The flux integrals on the right hand side of

equation (20) were solvedanalytically.

Note that the extent of the local ;field can be chosen

to be any size. There is a trade-off between accuracy and

efficiency.	 The larger the local field, the larger the

k

number of grid points at . which corrections must be .made,

	

meaning more cpu time. In this thesis the local field of a	
r

lop

7

f

i

1

i
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vortex was chosen to extend only to the 8 nearest grid

points. The fluxes were corrected on the twelve control

volume faces as shown in figure' 11. This was chosen in the

interest of computational.efficiency and due to the limits

of accuracy of formulas (21) and (22).

2.6.2 Local Velocity Correction

The correction to formulas (14) for the velocity are

found by once again noting that the formal accuracy of (14)

breaks down at or near vortex locations. The approach is

similar to that for the potential equation correction,

namely removing the local influences from ¢ and explicitly

adding the correct self-induced velocity.

Consider the i-th vortex, located within the grid cell

with lower left hand corner (j,k) (figure 12). To get the

velocity at (r^,z ` ), the values of u and w at the four

corners of the cell must be corrected by subtracting the

values of 
0e and $0" due to the local influences from

equation ( 14). This yields

Ilk

u jlk =	 ear	 zcr	 (23a)

^,z	 w	 ,V( 2 3 b )x,16	 2At	 ?au	 J, a ^,	 ^,	 rkr Jiy

Equations (23) represent the velocity induced at grid point

(j,k) due to all'other than local influences. The velocity

at the vortex i is found by bilinear interpolation of the

velocities found by (23) at the four surrounding grid

4

t

1

S



1517

It

31

r
points. The local velocity field, including the correct

self-induced velocity of the i-th vortex, is then explicitly

added.

Once again, the extent of the local field can be chosen

as any size. In this thesis, the only corrections made to

the velocity of each vortex is to its self-induced velocity.

The values	 of in (23) are found for the four

redistributed vortices representing the i-t'h vortex on the

Eulerian grid, using formula (22). The correct self-induced

velocity is found from the formula (1), where the value of

the core radius is specified independently of the grid

spacing.

"

	

	 If it is desired, it is possible to include other

nearby vortices in the local potential in equation (23).

	

Then local vortex-to-vortex interactions_ may be treated 	 1

using the Biot-Savant law, for example. 	 Again, there is a
i

trade-off between computational efficiency and accuracy.

For the current work, it was considered sufficient to
t

.`	

correct only for the self-induced velocity in order to

demonstrate the method.

t
2.7 Results Using Modified Equations	 1

2.7.1 Single Vortex Ringsq

With the	 corrected equations (20),	 (23), and a
'	 1

self-induced velocity added according to equation (24) the

velocity of the is now independent of the grid (figure 13).

i



+& `

P ORIGINAL PAGE I$'
32	 OF POOR QUALIFY

The core size a in figure 13 is that specified in equation

1, and is a parameter specified independently of the grid

spacing. Note that the grid dependence of the vortex

velocity is completely eliminated.

2.7.2 Two Vortex Rings

The improved scheme was used to calculate the motion of

two vortex rings of equal circulation. It is well known

that two coaxial vortex rings with circulation of the same'

sign will pass through one another, producing a "leapfrog"

motion. Several cases were tried, using different initial

separations and core sizes. In each case the circulation of

each ring was non-dimensionalized by the total circulation,

and lengths were non-dimensionalized by the radius of the

vortex centroid,	 N
N

R cew	
r`

which is an invariant of the motion.

Figure 14 show the trajectories of the rings for three

different core sizes and equal initial separations. The

core size of each ring was not constant, but varied such

that the volume of the ring was constant, i.e

rZ ` - CC n 5t4v^i

The core radii in the three cases are 0.1, 0.05, and 0.01

(;these values refer to the core radii for a ring of unit

radius). The forward Euler scheme with a fixed time step of

0.00625 was used. The initial separation in each case was

tl

r,

q
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0.4517, and the grid spacing was Ar = oz - 0.05.

Figures 15 and 1.6 show the ring radii and vertical

position as functions of time for the three cases, Note

that the half-period of the motion is independent of the
i

` 	 core size, and that the calculated centroid radius is

constant. Also mote in figure 16 that the speed of the

centroid is not constant, but is maximum when the rings are

of equal radii and minimum when the rings lie in the same

plane.,

Figure 17 show the trajectory for the leapfrogging

rings when the initial separation is varied. The core size
was fixed at 0.1 for the ring of unit .radius. The time

integration and grid parameters are as before for the larger

separation (figure 17a), but the time step is 0.0025 for the
smaller separation (figure 17b). Note the interesting

motion of -the latter configuration: the outer ring actually

has a net upward velocity when the rings lie in the same	 x

plane. The rings trace a "loop-the-loop" path as they

translate. For the larger initial separation, the calcula-

tions wore not carried to a half-period due to the time

involved. Indeed, for such a large separation, the motion

may not be periodic, but the rings may sis^zlply increase their

separation until it becomes infinite (Hicks 1922).

In figures 19 and 19, the time histories of the motions

are shown. Note that the period increased with increasing

initial separation.
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Examination of the plots of radius vs. time in each

case shows that when the planes (f the rings coincide after

the start of the motion, the separation of the rings'is

greater than the initial separation. (This is clearest in

figure 18b). This is due to the fact that the forward Euler

time integration is only first order accurate. (This is the

reason a smaller time step was chosen for the minimum

separation case.) The use of the modified Euler scheme,

equations (16), which is second order accurate alleviates

this problem. Figure 20 shows the results of the case of

figures 17-19b, using a time step of 0.00625. The accuracy

is much better, even with the larger time step. Also, the

ability to use larger time steps means that the cpu time for

the scheme can be less for the same accuracy, despite the

need to solve the potential equation twice for each time

level.

i

i

k

F

i
^	 f

w

4t

a

J
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CHAPTER 3. HELICOPTER WAKE APPLICATIONS

3.1 Rotor Wake Model.
3

For hovering rotor flows, the unsteady problem of

determining the wake configuration becomes a steady problem

when observed in rotating coordinates attached to the blade

(figure 21).	 The problem in blade coordinates becomes one

of determining the force-free	 vortex locations in an

azimuthal plane behind the rotor blade.

The trailing vorticity from	 each rotor blade is

discretized into N filaments. These filaments follow heli-

cal paths below the blade. However, the helix angles of

these filaments are small, and the effect of the filament

inclination on the induced velocities in an azimuthal plane

are second order (Miller 1961). The helical filaments can

then be replaced by vortex rings concentric about the axis

of rotation of the rotor.	 Each ring under the blade

represents the contribution of two half-spirals, one from

each blade (figure 22). 	 The ring at the blade plane

represents the portion of each spiral from	 = 0 to Tj2 from
	 ,a

each blade, where is the azimuth angle. Since the

velocity induced in 'the computational plane by these seg-

ments is only half that of a complete ring, their influence

is represented by treating the segments as a complete ring

but with only half the total circulation of the blade. If

the bound vorticity of the blade is neglected, which is

t
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again accurate to first order (Miller 1981), the flow is now

axisymmetric. The neglect of a2.rmuthal variations in the

flow beneath a rotor is analogous to the assumption of

two-dimensional. flow in the Trefftz plane when computing the

roll-up of vortex sheets shed from conventional wings

(Stremel 1982).	 (Liu, et.	 al.	 (1983) also use this

assumption in their Navier-Stokes solution of a rotor wake.)
r

The solution of the wake geometry is determined in the

azimuthal plane just behind the blade. The positions of the

trailing vortices attached to the blade are held fixed.

Below the blade, there are up to four wakes whose positions

correspond to the location of the blade trailing wake every

half revolution. The attached wake and the four following

wakes are collectively known as the intermediate wake. The

position of the vortices in the intermediate wake are solved

for in the computational domain (figure 23). 	 The velocities

of	 the	 intermediate	 wake	 vortices are	 found	 by solving

equations (3) through (6) as described for the unsteady flow

ca se_.

,R
After the	 fourth wake below	 the blade,	 it	 is assumed

that	 the	 wake	 no	 longer contracts,	 The	 point vortices

( representing	 the	 blade	 are	 assumed to	 roll-up	 into two
r

di stinct vortices,	 a tip vortex	 and a center	 vortex,	 The
4

radial positions of these 	 vortices are found from calculat- }'

ing the centroid of those vortices making up the tip and the
n

,^

b center	 vortices	 in	 the	 fourth	 intermediate	 wake.	 The

40) 1
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III

roll-up is determined by the 	 Betz model for .t:ll-up as used

by Miller	 (Miller 1981,	 Stremel 1982).	 The vertical spacing

».	 between	 these vortices	 in the	 far wake	 is fixed,	 and is

determined from	 the spacing between 	 the rolled-up vortices
»
»	 in last	 two sheets of the	 intermediate wake.	 The vortices

are	 then placed	 in fixed positions	 under the intermediate

wake.	 Ten	 tip	 and	 center	 vortices	 each	 are	 used	 to

represent	 the	 initial	 portion	 of	 the	 far	 wake.	 Some

intermediate	 wake	 vortices	 lie	 within	 the computational

domain.	 However, the wake lies primarily outside the domain

(figure 23) and contributes only to the boundary conditions.
F•

Beyond the rolled-up vortices,	 the remaining wake to z

n - 00 is represented	 by two	 wi-infinite vorte t cyl lnders,

corresponding	 to the	 tip and center	 vortices, located one €»

far	 wake spacing	 below the	 last two	 vortice,i~ of	 the far ti

wake.	 The	 strength	 (dr/dz)	 of each	 vortex	 cylinder is

x
determined by the strength	 and spacing of the .;orresponding

vortices in the far wake, and is given by

drr
47 k"	(24)

4
»

r where 4z F, , is the spacing	 between tip or center vortices in

the far wake, and r is	 the circulation of the tip or center
,f

vortex.	 The	 two vortex cylinders lie	 entirely outside the

computational	 domain	 and contri.bute	 only to	 the boundary

•	 conditions.

The object	 of the rotary wing	 calculations is to find
^	 =f:t

i

{t
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the configuration of vortices that exists in force free

equilibruim below the rotor blade plane. Given a

distribution of bound circulation on the blade, an initial

wake geometry is assumed. From this assumed configuration,

the velocity of the filament is integrated along the helical

path described by the filament ( figure 24). The trajectory

equations for the i-th vortex filament is

y,
car ► 	 d^	 r; (25)

where v is the azimuthal velocity and ^ is the azimuth angle

behind the blade. Since there are no perturbations in the

azimuth direction, v is equal to Ar, where .f1 is the

rotational speed of the rotor, The integration is carried

out over one half revolution 	 of the rotor '(for the

two-bladed helicopter rotors considered here) and the inter 	 ^

section of the filament in the computational plane is

determined. This calculated position of the filament will
a

in general be different from the assumed, original position.

The new position of the vortex is taken as a proportion of

the difference between the original and calculated posi -

tions. The vortex trajectory integration is then repeated	 0

for the new wake geometry, until the vortex positions have

converged.

For	 rotary	 wing	 flows,

non-dimensionalized as follows:

o =. a lo
of
	 r r R rr

r z av r.,.	 I _ 1\ 1* ;

the	 variables are

LA = . 9W*

W SORW4	 (26)
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where R is the rotor radius, and 1L is the rotational speed

of the rotor.

In	 the	 remainder	 of	 this 	 chapter,	 only the

non-dimensional equations will be used. 	 The asterisks on

the dimensionless variables will be dropped for convenience,

The numerical procedure to solve for the velocities of

the vortices in the intermediate wake is the same as for the

unsteady flows described in chapters 2-and 3. The boundary

conditions are satisfied by summing the velocities on the

boundaries due to the vortices of the intermediate wake and

the far wake, including those far wake vortices lying

outside the computational domain; and integrating to get the

potential. The contribution of the vortex cylinders to the

r	 boundary conditions is found by using an approximate formula gl

for the potential of a	 semi-infinite vortex cylinder due to

Scully (1975),
z

-`

d^^	 rya	 1
1

where z,,,	 is the position of	 the top of the cylinder.	 From

an	 assumed 	 initial	 configuration	 of	 vortices	 in	 the

computational plane	 the vortex trajectories	 are integrated

and the wake geometry updated Lentil it converges. #

The position of the vortices in the computational plane

! represent the intersection of 	 the trailing vortex filaments

' from	 a	 blade	 every	 half revolution,	 for	 the two-bladed

rotors considered here.	 If N vortices are used to represent

b

x
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the trailing
	

vorticity from a	 blade,	 then the	 position of

the	 i-th	 vortex	 correspon0s	 t^ the	 intersection	 of the

(i-N)th	 vortex with	 the plane,	 one half	 revolution later

(figure 25).	 To update the vortex positions, 	 the trajectory

equations	 (25) are integrated	 over half a blade revolution,

taking	 the	 velocity	 to be	 the	 mean of	 the	 velocity at

locations	 (r,,Z,)	 and	 Thus	 the provisional new

vortex coordinates are

r" IN	 §I(LA7	 U11	
(28a)

+	 (28b)

where the superscripts denote the "*eration level, and 6fis

the angle between the blade, and is equal to -V for a

two-bladed rotor.

The values F" anti i" are provisional values of the

vortex position. The equations are not well-conditioned and

the calculations must be under-relaxed in order to get

converged results. The vortex positions at iteration level

n+1 are

r	 r N' -4
	

(29a)

(29b)

where,..; is the under-relaxation parameter. 	 A value of 0.2

was used for (.>in the current calculations.

ia thr?, interest of speeding convergence of the wake

- IN
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geometry, the SLOR solution of equation (20) was run to

convergence only for the first two wake 'aerations. After

that, the number of SLOB relaxation sweeps was restricted in

order to speed the convergence of the wake.

The computational scheme is diagrammed in figure 26.

3.2 Rotor Wake Flow Solutions

The solution for the wake geometry of a two-ble.ded

helicopter in hover has been attempted. The distribution of

bound circulation on the blade was taken from Miller (1981),

using the distribution formulas of Stremel (1982). The

bound circulation distribution is shown in figure (27). The

initial spacing between the four vortex sheets in the

` intermediate wake was estimated from momentum theory, which

gives

C, = 2 " ^
	

(30)

where CT is the thrust coefficient, taken as 0.00452, and

is the axial velocity in the wake, w1nR. 	 !
f

Solutions for the wake geometry were attempted using
t

the simplified wake model of Miller ( 1 981) as well as a more

detailed model, representing the intermediate wake with a

large number of vortices. The downwash at the blade has

also been calculated for each case.	 This is done by

•°	 subtracting from the downwash the influence of those inter-

mediate wake vortices located in the blade plane. The blade
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attached	 wak	 is	 then represented	 by a	 series of

semi-infinite vortex lines and is called the near wake

	

(Muller 1981), The downwash due to the near wake is added	 '4

to the velocities induced by the wake beneath the-blade.

	

Unlike Miller, the calculated downwash is not used to	 s.

rt-calculate the blade loading, but is merely used to
R

compare results.

3.2.1 Simplified Model

Using Stremel's load distribution formula, the

intrmediate wake was assumed to be rolled-up into two

distinct vortices: a tip vortex which consisted of all the

circulation from the peak blade loading at 0.9R to the tip,

and a center.vortex, consisting of the vorticity rolled-up
3

	from 0.25R to 0.9R. The root vortex (from O.iR to 0.25R) 	 ►

was	 includes initially,	 but it was	 found to cause

	

computational difficulties; following Miller (1981), it was 	 ='

ignored. The initial configuration is shown in figure 28.
}

The wake' geometries and downwash at the blade for

	

vortex core sizes of 0.01, 0.025, and 0.05 are shown in 	
f
r

figures 29-31 after 150 iterations. The grid spacing was

or-4z=0.025 on a 51x67	 grid.	 The results were well

converged after about 100 iterations.	 The differences in

	

r	 Ythe tip vortex positions are slight, with the results for

the larger cores being closer to the blade, due to their

smaller self-induced velocities. 	 The results compare quite
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well with the results of Miller (1901). The differences

demonstrate the ability of the present method to calculate

the self- induced velocity of a vortex independentl y of the

grid features.	 Also shown are measured vortex positions

(Miller 1981). The agreement is seen to be good.

Comparing the downwash over the central portion of the

blade, it is seen that the downwash is greater (i.e., more

negative) the larger the core size. This is due to'the

greater proximity to the blade of the larger t romp vortex.

However, the differences are slight Among the three cases.

Runs performed on grids coarser grids (4r -Az=0.05 and

0.1) are shown in figures 32 and 33 for a core size of

0.025. The differences in the vortex locations are slight,

with the downwash being virtually identical in each case.

All these cases have been run on the Multics system.
t

The cpu requirements for the calculations on the finest grid
e

(or=0z=0.025) were approximately 8 minutes for 150 wake `	 f
geometry iterations. Convergence on the coarser grids

(or=4z=0.05 and 0.1) was obtained in about 100 iteration,

and required 2 minutes and 1 minute, respectively.

3.2.2 Detailed Wake Model

It was desired to determine the effect of increasing

the number of vortices used to represent the intermediate

wake. Runs were performed using -5, 10, 21, and 42 vortices

to represent the blade trailing vorticity.	 All, runs were

s
1

r
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performed on a grid of ar=4z=0.025 and a vortex core size of

0.025. The core size was chosen based on Miller's (1981)

recommendation. The grid spacing was chosen on the basis of

providing good resolution of interactions among nearby

vortices, suggesting a spacing of the order of the core

size. The root vorticity from .IR to .25R was neglected to

prevent convergence difficulties.

When five vortices were used to represent the blade

trailing vorticity (a tip vortex and four vortices represent

the inner portion of the blade) very good converged results

were achieved (figure 34). Tip vortex positions agreed well

with those calculated using Miller's simplified model.
Convergence was achieved at approximately 150 iterations.

Note that the tip vortex is moving at approximately half the

velocity of the edge of the inner vortex sheet. This is as

expected, if the tip vor tex is considered to be the edge of

a cylindrical shear layer. The edge of the shear layer

moves at the mean of the outer and inner velocities.-

Comparison of the downwash to the two vortex case shows

small differences. The shape of the downwash distribution

is somewhat flatter than that of the simplified model due to

the less concentrated vorticity in the central portion of

the intermediate wake.

Calculations using ten vortices to represent the

trailing vorticity in the Intermediate wake are shown in

figure 35. One vortex represents the tip vortex while nine



45

vortices	 make-up	 the	 inner	 portion	 of	 the	 blade wake.

Again, these results are	 well converged.	 Comparison of the
downwash	 in	 figure	 35	 to	 that	 in	 figure	 34	 shows no

differences.	 This	 suggests that the details	 of the repre-

sentation of the inner part of 	 the wake are not critical to

the calculation of the wake geometry and downwash.

When the wake was represented by twenty-one vortices (a

tip vortex plus	 twenty on the inner portion	 of the blade),

results did not converge.	 An	 iteration history is shown in

figure 36.	 Note that some	 of the vortices	 from the older

(i.e. #	lowermost) portion	 of the	 wake are	 being swept-up

near to	 the tip vortex	 closest the blade.	 Examination of

the downwash iteration history	 also illustrates the lack of

convergence of that quantity as weal.

Increasing	 the	 number	 of	 vortices	 to	 42	 trailing

filaments,	 the results	 are even more	 chaotic	 (figure 37).

The	 radial	 location	 and	 strengths	 of	 the	 vortices

representing the blade trailing vorticity are shown in table

1.	 Also, in this case, the vortex core size for each vortex
has	 been chosen	 to be	 0.01, so	 that the	 vortices do not
initially	 overlap.	 The	 root vorticity	 has been neglected

1

from O.iR to	 0.17R.	 The tip vorticity is	 now contained in
1

r
the five	 outboard vortex markers of	 the blade, rather than

one	 distinct tip	 vortex.	 However, rather	 than rolling up

into	 a	 series of	 distinct tip	 vortices, the	 markers are

pulled apart.	 A few vortices from the older portions of the -
x

i	 _
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wake can be seen to be drawn into the tip vortex nearest the

blade. These markers seem to be oscillating slowly up and

down as the iteration count. continues.. Alscl , chaotic

behavior in the lowest portion of the intermediate wake is

apparent with the larger number of vortex markers. 	 •"

Representative run times on Multics for the 5, 21, and

42 vortex cases were approximately 10 minutes, 23 minutes,

and 32 minutes, respectively. The cost of increasing the

number of vortex markers in the flow does not increase as

N 2 , as it does with Biot-Savart methods.	 Note also that

these	 calculations	 were performed	 without a	 fast Poisson
4

solver.	 Using	 a fast solver to	 replace the SLOR algorithm

should reduce the run times considerably. 	 {

It is	 clear from the	 results that with	 an increasing
t4

number of	 vortices representing the	 intermediate wake, the

wake becomes	 unstable.	 Although it	 is not clear	 what the
t

,instability	 is	 due	 to,	 it	 is	 suspected that	 it	 may be

physical.	 Experimental	 results (Landgrebe	 1971)	 show an

instability in the kourth occurrance of the tip vortex below

the blade.	 The results in figure 37 show the vortex motions

apparently	 becoming more	 chaotic in the 'older portions of

the	 wake.	 However,	 it	 is	 possible	 that	 the stability

problems may be numerical 	 and arise from the representation

of	 a continuous	 vorticity distribution	 by discrete vortex	 n
k f.l	

d	
.b 

d	
1	

d.i aments.	 As	 escri a in section .2, 	 iscrete vortex

representations of trailing vortex sheets have required

r
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various ad hoc	 fixes to obtain a smooth	 roll -up, and it is

not	 clear	 that continuous	 vorticity distributions 	 can be

represented by discrete vortices ( Saffman & Baker 1579).

Further	 evidence of	 the possible	 numerical nature of
i

the instability results from	 noting that convergence can be

acheived	 with a	 coarser grid.	 In	 figure 38,	 the case of	 j

figure 37	 has been re-run	 with a grid	 size of &r=pz=0.05.

in this instance, the	 wake geometry did converge.	 Compari-

son of the	 downwash at the blade shows 	 good agreement with	 `.

the results of	 figures 34 and 35.	 In	 this case the larger

grid size	 results in "smearing-out" of	 the velocity fields

Wof nearby	 vortices.	 Although the	 self-induced velocity of

4.,
1

each vortex is correctly 	 determined,	 interactions of nearby

vortices	 are	 not	 corrected	 for,	 and	 thus	 show	 a grid	 F

dependence.	 on	 a fine grid, with	 better resolution of the 	 )I

a
vortex-to-vortex interactions, the discrete structure of the

rk vorticity distribution is more apparent. 	 This suggests that

f the more distributed the vorticity distribution, 	 as resolved	 ^	 s
p	 ^

by the numerical scheme, the more stable the flow.

It is also felt that	 the iterative approach to finding
i

the wake geometry, in which 	 a steady solution is assumed to

exist, may be ill-posed and fail to have a solution. 	 A more

I correct	 formulation may	 be a	 time-dependent problem which

may or may not have a steady solution.

_. nt
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CHAPTER 4.	 CONCLUSIONS

A	 method	 for	 calculating	 axisymmetric	 vortex flows

using	 an	 Eulerian-Lagrangian	 flow	 description	 has	 been

described.	 A	 straightforward	 adaptation	 of	 the

"cloud-in-cell" approach 	 as used by Stremel	 (1982) for two

dimensional	 flows is	 inadequate due to	 the grid dependent

self-induced	 velocity.	 A	 modification	 to	 the

"cloud-in-cell" scheme to eliminate	 the grid effect and add

the	 correct self-induced	 velocity of the	 vortex rings has

been described, and has been demonstrated in the calculation

A of the	 motion of a	 single vortex ring.	 The	 motion of twos:

"leapfrogging"	 vortex rings	 has also	 been calculated, and

f
the calculation	 of the wake geometry	 of a helicopter rotor•

in hover has been'attempted. 	 Converged results for the wake

geometry have been achieved only for a few cases.

In comparing	 the current method	 to Biot-Savart vortex

methods,	 the advantage	 of the	 "cloud-in-cell" approach is

F.
its	 ability	 to	 handle	 large	 numbers	 of	 vortices	 more'

efficiently	 than Riot-Savart	 methods.	 The	 current method

has allowed the helicopter wake model of Miller (1981) to be

extended to handle large numbers of vortices.	 The disadvan-

tage	 of	 the	 current	 approach	 when	 compared	 to

two-dimensional	 "cloud-in-cell" schemes	 is the	 need for a

local correction	 in order to eliminate	 the grid dependence
F

of the self-induced velocity. The extra overhead required

for the local correction terms increases computational time,

t	 ,

-f

ii/



meaning	 a	 trade-off	 must	 be	 made	 between	 accuracy and

efficiency when determining the	 extent of the local correc-

tion	 field.	 Also,	 the development of	 the helicopter wake

calculations to handle large numbers 	 of vortices has led to

convergence problems.	 The instability of the rotor wake has

been observed experimentally and may be the reason calculat-

ed results have not converged.	 However,	 it is not yet clear

that the representation of the	 wake as discrete vortices is

capable	 of	 accurately	 modeling	 a	 continuous	 vorticity

distribution.	 Also,	 it	 is	 not clear	 that	 an iterative

procedure	 in	 which	 a	 steady	 solution	 is	 assumed	 is a

properly posed problem.

Further developments of th :r	 method could include such

techniques as multigrid and embedded meshs to better resolve'
s

the vortical regions of the flow.	 Such approaches may allow

further	 understanding	 of	 the	 nature	 of	 the	 observed
y

instabilities in the present calculations. 	 Also,	 the incor-

poration	 of a	 fast Poisson	 solver to	 solve the potential
r

equation	 should	 considerably	 improve	 the	 speed	 of	 the

calculations.

A	 final note	 must be made	 of the fact	 that the core
z

size of	 the vortices representing the 	 intermediate wake is

-chosen arbitrarily.	 No model for the core size is available

•	 at this time, and it is unknown what constitutes the correct

yea	 choice	 for the	 core size.	 If free	 wake analyses• are to

become useful, it is necessary 	 that an understanding of the

•
•

P
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relationship between vortex core size and the physics of the

flow be developed.

R	 'M
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Table 1. Blade Trailing Vortex Strengths For
Case Illustrated in Figure 37

H ,	 Circulation	 Radius

	

-0.00090	 0.17000

	

-0.00077	 0.19000
'	 -0.00068	 0.21000

	

-0.00061	 0.23000

	

-0.00055	 0.25000

	

-0.00050	 0.27000

	

-0.00046	 0.29000

	

-0,00043	 0.31000

	

-0.00039	 0.$3000

	

-0}00036	 0.35000

	

-0400034	 0.37000

	

0.00031	 0.39000

	

0.00029	 0.41000

	

-0.00027	 0.43000

	

-0.00025	 0.45000
-0.00023 0,47000
-0.00021 0.49000
-0,00020 0.51000
-0.00018 0.53000
-0.00017 0.55000
-0,00015 0.57000
-0.00014 0.59000 r
-0 . 00012 0.61000 r
-0400011 0.63000
-0.00010 0.65000
-0.00008 0.67000
-0.00007 0.69000
-0.00006 0.71000
-0.00004 0.73000.
-0.00003 0.75000
,1 0.00002 0.77000
-0.00001 0.79000
-0.00071 0.81000
-0.00169 0.83000

{ -0.00201 0.85000 ►
-0.00169 0.87000

E -0.00071 0.89000
0.00030 0.91000
0.00094 0.93000
0.00180 0.95000
0.00331 0.97000
0.01565 0.99000

,i
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